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ABSTRACT
Researchers have recently defined and presented the theoretical con-
cepts and an algorithm necessary for mining so-called probabilistic
frequent itemsets in uncertain databases—based on possible world
semantics. Further, there exist algorithms for mining so-called
generalized itemsets in certain databases, where a taxonomy ex-
ists relating concrete items to abstract (generalized) items not in
the database. Currently, no research has been done in formulat-
ing a theory and algorithm for mining generalized itemsets from
uncertain databases. Using probability theory and possible world
semantics, we formulate a method for calculating the probability a
generalized item will occur within an uncertain transaction.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing; G.3 [Probability and Statistics]: Distribution functions

Keywords
Probabilistic generalized frequent itemsets, existential probability
of generalized itemsets, uncertain databases

1. INTRODUCTION
Data mining generalized frequent itemsets (GFIs) and general-

ized association rules was first proposed by Srikant et al. [6]. The
methods employed in what will sometimes be referred to as gener-
alized itemset mining in this paper, take much inspiration from the
algorithms and concepts of traditional frequent itemset and asso-
ciation rules mining [1, 2, 5]1. Generalized itemset mining differs
from traditional itemset mining, through the addition of a taxonomy
G to an itemset database T . This taxonomy forms an is-a relation-
ship among items, and is represented as a directed acyclical graph.
An example taxonomy used throughout this paper is shown in Fig-
ure 1. In G one sees that apple and banana is-a fruit, and fruit is-a

1Although generalized itemset mining was discovered after tradi-
tional itemset mining, as the name implies, generalized itemset
mining constitutes a general case of the special case of itemset min-
ing.
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Figure 1: Example Taxonomy G

produce. Further, within G there exists an ancestor/descendant re-
lationship among all items withinG. For example, an item a is said
to be a descendant of a′, if and only if, there exists a path from a′

to a. Conversely, a′ is called an ancestor of a. An arbitrary ances-
tor of an item a is denoted as â. With the addition of a taxonomy,
one can develop new problems and discover knowledge previously
not easily discernible. One such problem, is to find “rules that span
different levels of the taxonomy.” [6] This problem is especially im-
portant as items at lower levels of the taxonomy may not have the
minimum support necessary to qualify as frequent; however, items
higher up in the taxonomy may. For example, “department stores or
supermarkets typically have hundreds of thousands of items, [and]
the support for rules involving only leaf items (typically UPC or
SKU codes) tends to be extremely small.” [6] Another data mining
problem, which has received a fair amount of more recent research,
is that of mining for so-called probabilistic frequent itemsets (PFIs).
First proposed by Bernecker et al. [4], this work concerns itself
with mining of frequent itemsets in uncertain databases; that is,
databases in which each item in the database T has an associated
existential probability—denoting the probability of its occurrence
within a transaction. In this work, an arbitrary itemset is said to be
probabilistically frequent if its frequentness probability, defined as
the probability the item will have a support greater than or equal
to a user-defined minimum support threshold minsup, is greater
than or equal to a user-defined confidence threshold τ . Thus, to
find the frequentness probability of a particular itemset, a discrete
probability distribution function is calculated, which describes the
probability of the itemset’s support being a certain value, and is
based on possible world semantics.

Given an uncertain database T and a taxonomy G, no method
currently exists to mine for generalized frequent itemsets in uncer-
tain databases. The two salient problems that need to be solved to
formulate such a method are: 1) A method needs to be formulated
to calculate the probability of a generalized item occurring within
a particular transaction according to possible world semantics; 2)
An algorithm is needed which will enumerate candidate itemsets



(including generalized items) in an efficient manner. In this paper,
we formulate a method for calculating the probability of a particu-
lar generalized item occurring within a particular transaction. This
method can be used to extend the original uncertain database, to
then mine for so-called probabilistic generalized frequent itemsets
(PGFIs). We further present an algorithm for mining these concepts
from uncertain databases, and provide an experimental evaluation
of the algorithm.

The rest of the paper is laid out as follows: section 2 provides
preliminary concepts necessary for understanding the rest of the pa-
per (including concepts such as generalized frequent itemset min-
ing and the uncertain data model used); section 3 disseminates the
new PGFI concepts and algorithm PGFIM for probabilistic gener-
alized frequent itemset mining; section 4 provides the reader with
an experimental evaluation of the newly formulated algorithm; and
finally, section 5 provides a conclusion.

2. PRELIMINARIES

2.1 Generalized Frequent Itemsets
The taxonomy G is represented as a weakly connected directed

acyclical graph; formally, as the pair G = (A,E), where A and E
both sets, and E ⊆ A× A. The elements of A are vertices, which
represent distinct items; and the elements of E represent directed
edges between elements of A = {a1, a2, . . . , am}. If a directed
edge between a vertex ai and aj exists, aj is called a child of ai,
and conversely, ai is called the parent of aj . Further, G has the
constraint that it is weakly connected, that is, ignoring the direc-
tion of the edges within G, a path must exist from all vertices to
all other vertices. Further, it must also be acyclical, i.e., there is
no path from a node to itself. A taxonomy G contains vertices
representing both items found in the databases (leaf items), and
those which are generalized or abstracted (non-leaf) items. A ver-
tex a ∈ A represents a non-leaf item, if and only if, a has at least
one child. Also, a vertex a represents a leaf item, if and only if,
a has no children. The set of vertices representing items are parti-
tioned into the two disjoint sets: AL = {a | a is a leaf item in G}
and ANL = {a | a is a non-leaf item in G}. Also, let the tax-
onomy G define the relationships (e.g., ancestor and descendant)
among each of the items a ∈ A. If a path in G exists from some
item a′ via directed edges to another item a, we say a′ is an an-
cestor of a; and conversely, that a is a descendant of a′. Let the
set D(a) = {x | x ∈ AL ∧ x is a descendant of a} denote the
set of all descendant leaf items in G of an arbitrary non-leaf item
a ∈ ANL.

A generalized itemset I is defined to be any subset ofA, i.e., I ⊆
A. Normally, only leaf items are found in the actual database, i.e.,
elements ofAL (alluded to above), and in this paper this is assumed
to be the case. That is, given a database T = {t1, t2, . . . , tn},
each tj is a subset of only AL. For itemsets which contain only
leaf items, the set inclusion and subset (i.e., ∈ and ⊆, respectively)
notation meanings are intuitive. However, given the presence of
non-leaf (generalized) item, the previously mentioned notions must
be redefined.

DEFINITION 1 (GENERALIZED ITEM SET INCLUSION). An
item a ∈ A is an element of a set S with respect to taxonomy
G, denoted as a ∈G S, if and only if, a ∈ S, or there exists an
a′ ∈ D(a) such that a′ ∈ S.

DEFINITION 2 (GENERALIZED ITEMSET SUBSET-SUPERSET).
An itemset I ⊆ A is a subset of a set S with respect to taxonomy
G, denoted as I ⊆G S, if and only if, for each item a ∈ I , a ∈G S.

TID Itemset
t1 apple, banana, kale
t2 apple, banana, cheese
t3 apple, milk, cheese

Figure 2: Example Database

Further, we say that the support of an arbitrary generalized itemset
I ⊆ A over the database T , denoted SupT (I), is the the number of
transactions in T that contains I with respect to taxonomy G, and
is defined formally as:

SupT (I) = |{t | I ⊆G t ∧ t ∈ T )}| (1)

For example, if given the example itemset database in Figure 2 and
the taxonomy in Figure 1, the support of the itemset {fruit, cheese}
is 2, because {fruit, cheese} ⊆G t2, {fruit, cheese} ⊆G t3,
but {fruit, cheese} *G t1. If the support of a generalized item-
set I ⊆ A is greater than or equal to some user-defined threshold
minsup, then I is considered frequent. Thus, the definition of a
generalized frequent itemset (GFI) is given below.

DEFINITION 3. Given a taxonomy G and an itemset database
T = {t1, t2, . . . , tn}, where each tj ⊆ AL, a generalized itemset
I ⊆ A is considered a generalized frequent itemset (GFI), if and
only if, SupT (I) ≥ minsup, where minsup ∈ [0, n] is a user-
defined threshold.

Thus, the problem statement for mining GFIs, is to discover all
(generalized) itemsets I ⊆ A, whose support is greater than or
equal minsup.

2.2 Uncertain Data Model
The major difference between traditional frequent itemset min-

ing and probabilistic frequent itemset mining, is that in the tradi-
tional case, one knows with certitude whether or not an item occurs
within a particular transaction or not; whereas, in the probabilis-
tic case, one may only have the probability of an item occurring
within a particular transaction. Let T = {t1, t2, . . . tn} be an un-
certain database, in which each transaction tj consists of a set of
pairs (ai, P r(ai ∈ tj)), where ai ∈ A and Pr(ai ∈ tj), de-
notes the probability of item ai occurring in transaction tj . The
probability of ai occurring within transaction tj , is between 0 and
1. An uncertain item ai within a transaction tj , is one which
Pr(ai ∈ tj) ∈ (0, 1). If Pr(ai ∈ tj) = 1 then the item ai is
known to occur with certitude and it is a certain item in tj2; other-
wise ai is called an uncertain item. Let each transaction t be par-
titioned into two disjoint sets—one containing all uncertain items
u1u2 · · ·uLt , i.e., Pr(ui ∈ t) ∈ (0, 1), and the other which con-
tains all certain items c1c2 · · · cNt , i.e., Pr(ci ∈ t) = 1. Figure 3
shows an example uncertain database, where t1 has two uncertain
items, apple and banana with existential probabilities 0.89 and
0.99, respectively, and one certain item kale. Transactions t2 and
t3 both have three uncertain items and no certain items. A possible
world of transaction t is a concrete instance of t which contains all
certain items c1c2 · · · cNt and either contains each uncertain item
ui (1 ≤ i ≤ Lt) or not. Therefore, a possible world can be derived
from an Lt-bit binary string v = v1v2 · · · vLt ∈ {0, 1}Lt through
a bijection from the set ofLt-bit binary strings to the set of possible
worlds of t, denoted as W (t), φ : {0, 1}Lt →W (t), defined as:

φ(v) = φ(v1v2 · · · vLt) = b1b2 · · · bLtc1c2 · · · cNt

2Items having a probability of zero occurring within a particular
transaction are not shown in the uncertain database—as they cer-
tainly do not occur.



TID Uncertain Itemset
t1 (apple, 0.89), (banana, 0.99), (kale, 1.0)
t2 (apple, 0.4), (banana, 0.45), (cheese, 0.12)
t3 (apple, 0.9), (milk, 0.95), (cheese, 0.20)

Figure 3: Example Uncertain Database

where

bi =

{
ui, if vi = 1

ε, if vi = 0

for i = 1, . . . , Lt and ε is the empty symbol. Since there are 2Lt

Lt-bit binary strings in {0, 1}Lt , we must have 2Lt possible worlds
in W (t). Let a possible world in W (t) be denoted by w(t) =
φ(v). The probability of possible world w(t) = φ(v), denoted by
Pr(w(t)), is calculated by:

Pr(w(t)) = Pr(φ(v), t)

= Pr(φ(v1v2 · · · vLt), t)

=
∏
vi=1

Pr(ui ∈ t) ·
∏
vi=0

(1− Pr(ui ∈ t))
(2)

if independence among the uncertain items if assumed. From (2),
we have ∑

v∈{0,1}Lt

Pr(φ(v), t) = 1

In other words, (2) defines a probability distribution for all possible
worlds of W (t).

In a traditional (certain) itemset database, the probability of item-
set I occurring in transaction t is 1 if I ⊆ t, or 0 otherwise. In
contrast, for an uncertain itemset database, the probability of I oc-
curring in t, denoted as Pr(I ⊆ t), is the sum of the probabilities
of all the possible worlds w ∈ W (t) which contain I . Let WI(t)
be the set of possible worlds, which contain I; that is, WI(t) =
{w | w ∈ W (t) ∧ I ⊆ w}. Further, recall that the function φ is
a bijection, and therefore, its inverse φ−1 is a mapping from W (t)
to {0, 1}Lt ; that is: φ−1 : W (t)→ {0, 1}Lt . Let S be a subset of
W (t). We use φ−1(S) to denote the range of function φ−1 from
S; that is: φ−1(S) = {φ−1(w) | w ∈ S}. Thus, φ−1(WI(t)) is
the set of all Lt-bit binary strings, whose corresponding possible
worlds contain I , that is, for all v ∈ φ−1(WI(t)), I ⊆ φ(v). Fi-
nally, let φ(v)i be the i-th element of φ(v), 1 ≤ i ≤ Lt + Nt,
and vi be the i-th element of v, i ≤ i ≤ Lt. With that, one may
calculate Pr(I ⊆ t) as:

Pr(I ⊆ t)

=
∑

v∈φ−1(WI (t))

Pr(φ(v), t)

=
∑

v∈φ−1(WI (t))

(∏
vi=1

Pr(ui ∈ t) ·
∏
vi=0

(1− Pr(ui ∈ t))

)

=
∏

φ(v)i∈I

Pr(ui ∈ t) ·
∏

φ(v)i /∈I

(Pr(ui ∈ t) + (1− Pr(ui ∈ t))

=
∏

φ(v)i∈I

Pr(ui ∈ t)

=
∏
ui∈I

Pr(ui ∈ t)

(3)

Since Pr(ci ∈ t) = 1 for a certain item in t, one can calculate

Pr(I ⊆ t) simply as:

Pr(I ⊆ t) =
∏
a∈I

Pr(a ∈ t) (4)

The set of all possible worlds W induced by all transactions in the
uncertain database T = {t1, . . . , tn} is the Cartesian product of
W (tj), j = 1, . . . , n as follows:

W =W (t1)×W (t2)× · · · ×W (tn) (5)

A simplified example uncertain database is shown in Figure 4(a),

TID Uncertain Itemset
t1 (banana, 0.99)
t2 (banana, 0.45), (kale : 0.4)

(a) Simplified Example

Possible Worlds
W (t1) 〈 〉, 〈banana〉
W (t2) 〈 〉, 〈banana〉, 〈kale〉, 〈banana, kale〉

(b) Possible Worlds

Figure 4: Simple Example of Possible Worlds

and the possible worlds of each transaction is shown in Figure
4(b). (Each transaction of each possible world in W (tj) is en-
closed by 〈 〉.). If the assumption of independence between the
transactions in T is valid, the probability of a possible world w =
(w(t1), w(t2), . . . , w(tn)) ∈W can be calculated as follows:

Pr(w) =

n∏
i=1

Pr(w(ti)) (6)

where Pr(w(t)) is calculated by (2).
In a traditional (certain) itemset database T = {t1, . . . , tn}, the

support of itemset I in transaction t, denoted Supt(I), is 1 if I ⊆ t
or 0 otherwise. The support of I over the entire database T , denoted
SupT (I) is:

SupT (I) = Supt1(I) + Supt2(I) + · · ·+ Suptn(I) (7)

Notice (7) is equal to the number of transactions that contain I , i.e.,
SupT (I) = |{t | I ⊆ t ∧ t ∈ T}|.

However, in an uncertain database T , the support of I in trans-
action tj , Suptj (I), is no longer a concrete 0 or 1. Instead, it is a
random variableXI

j following a Bernoulli distribution with param-
eter pj , where pj = Pr(XI

j = 1) = Pr(I ⊆ tj) (calculated by
(4)) and 1 − pj = Pr(XI

j = 0) = Pr(I * tj) (or the probabil-
ity of success and failure, respectively). Therefore, in an uncertain
database T , the support of I over the entire database T is a random
variable XI =

∑n
j=1X

I
j (according to (7)). The random vari-

able XI follows the Poisson binomial distribution with parameters
pj = Pr(I ⊆ tj), j = 1, . . . , n, if the assumption of indepen-
dence between transactions is made.

The probability that XI = i, (0 ≤ i ≤ n), is:

Pr(XI = i) =
∑

S⊆T,|S|=i

∏
tj∈S

pj ·
∏

tj∈T−S

(1− pj)

 (8)

Equation (8) is true, because the set S ⊆ T has exactly i transac-
tions, and the probability of an arbitrary possible world w ∈ W in
which all i transactions in S contain I and the rest (n - i) do not,
is equal to

∏
tj∈S pj ·

∏
tj∈T−S(1 − pj). Given minsup and a

confidence threshold τ ∈ [0, 1], an itemset I is said to be frequent



with confidence τ , if and only if, Pr(XI ≥ minsup) ≥ τ . One
can calculate Pr(XI ≥ minsup) using the following formula:

Pr(XI ≥ minsup)

=
∑

S⊆T,|S|≥minsup

∏
tj∈S

pj ·
∏

t∈T−S

(1− pj)

 (9)

DEFINITION 4. Given an uncertain database T and an itemset
I , I is a probabilistic frequent itemset (PFI) with confidence τ , if
and only if Pr(XI ≥ minsup) ≥ τ , where minsup ∈ [0, n] and
τ ∈ [0, 1] are user-defined thresholds. [4]

Finally, the problem of mining probabilistic frequent itemsets, is to
discover all itemsets I ⊆ A such that Pr(XI ≥ minsup) ≥ τ ,
where minsup and τ are user-defined thresholds.

3. MINING GENERALIZED PROBABILIS-
TIC FREQUENT ITEMSETS

In section 2.1, the problem statement and theory behind the min-
ing of arbitrary generalized frequent itemsets I ⊆ A = AL ∪
ANL—given a taxonomy G and an itemset database T , in which
each transaction t is a subset of AL—was disseminated. Further,
in section 2.2, the problem statement and theory behind the min-
ing of probabilistic frequent itemsets from uncertain databases was
presented. In that domain, no taxonomy exists. Instead each trans-
action t is a set of pairs (ai, P r(ai ∈ t), where ai ∈ A and the
Pr(ai ∈ t) denotes the probability of item ai appearing in trans-
action t. So far, no research has been done to formulate a method
for mining generalized itemsets from uncertain databases.

DEFINITION 5. Given a taxonomy G = (A,E), A = AL ∪
ANL, and an uncertain database T = {t1, . . . , tn}, which only
contains items in AL, an itemset I ⊆ A is considered a probabilis-
tic generalized frequent itemset (PGFI) with confidence τ , if and
only if, Pr(XI ≥ minsup) ≥ τ , where minsup ∈ [0, n] and
τ ∈ [0, 1] are user-defined thresholds.

Thus, the problem statement for probabilistic generalized frequent
itemset mining, is to discover all itemsets I ⊆ A, such thatPr(XI ≥
minsup) ≥ τ , where minsup and τ are user-defined thresholds.

There are two major problems which need solving in order to
successfully mine for PGFIs: 1) a way to calculate the existential
probability of a generalized itemset occurring within an uncertain
transaction; 2) a way to efficient calculate the aforementioned prob-
ability, and to enumerate possible generalized itemset candidates.
The first problem is solved in section 3.1, and the second in section
3.2.

3.1 Calculating Existential Probabilities for
Generalized Itemsets

The first major problem mining for PGFIs, is to formulate a
method for calculating the probability that a generalized item, g ∈
ANL, occurs within a particular transaction t, denoted as Pr(g ∈G
t). This should be the sum of the probabilities of all possible worlds
φ(v) that contains at least one leaf item that is a descendant of g.
Recall that D(g) is the set of leaf nodes in AL that are descendants
of g. In other words,

Pr(g ∈G t) =
∑

φ(v)∩D(g)6=∅

Pr(φ(v), t) (10)

Using (10) one is able to calculate the existential probability of
an arbitrary non-leaf (generalized) item g occurring within a trans-
action t. However, (10) requires the enumeration of all possible

worlds, and is therefore infeasible for all but trivial databases. Thus,
similar to (3), we re-write the (10) as:

Pr(g ∈G t) =
∑

φ(v)∩D(g)6=∅

Pr(φ(v), t)

= 1−
∑

φ(v)∩D(g)=∅

Pr(φ(v), t)

= 1−
∑

D(g)⊆φ(v)

Pr(φ(v), t)

= 1−
∏

x∈D(g)

(1− Pr(x ∈ t))

·
∏

y/∈D(g)

(Pr(y ∈ t) + (1− Pr(y ∈ t)))

= 1−
∏

x∈D(g)

(1− Pr(x ∈ t))

(11)

where φ(v) is the complement of φ(v), i.e., φ(v) = AL(t)−φ(v).
Here AL(t) is the set of items in t, u1 · · ·uLtc1 · · · cNt , and pos-
sible world φ(v) is a subset of AL. If x ∈ D(g) is a certain item
cj , we have Pr(x ∈ t) = 1, then Pr(g ∈ t) = 1. This is con-
sistent with the understanding that if a leaf descendant of a gen-
eralized item g occurs in t with certitude, then g also occurs in t
with certitude. When calculating the probability of a generalized
item, one may choose to do so in an ad-hoc manner, or once there
is a need to calculate the probability of the item, it can be done
for every transaction in T and the corresponding probability added
to each transaction—creating an extended database. In this way,
future need for the probability can be simply “looked-up”.

3.2 Efficient Enumeration & Probability Cal-
culation

To discover all PGFIs, two salient questions must be addresses:
1) what type of enumeration scheme will be used to guide the min-
ing process? 2) how will the probability distribution of XI for an
arbitrary I ⊆ A will be calculated?

To simplify discussion of the enumeration technique used, the
taxonomy shown in Figure 1 has been recreated in Figure 5, where
each item has been abbreviated using the first letter of the corre-
sponding item, and the generalized item Dairy (and its descen-
dants) have been pruned. In [7], Sriphaew et al. present the SET

F

A B

{ }

K

V

P

Figure 5: Simplified Taxonomy G

algorithm. That algorithm uses an efficient technique to enumer-
ate candidate generalized itemsets in a certain itemset database. In
this paper, we choose to use its fundamental enumeration scheme
to determine which candidate generalized itemsets to enumerate
and in which order. The SET algorithm’s enumeration technique
is performed in a top-down fashion, which uses both the subset-
superset relationship, defined in Definition 2, over the items in A
and the parent-child relationships defined by the taxonomy G. In
simple terms, the search space is enumerated in such a fashion,
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KFV

AV
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ABK

AK

BV

BK

FK

Figure 6: Example SET Enumeration

as to ensure a candidate is only generated if all of its subsets are
also frequent; and thus, eliminating the gratuitous enumeration of
candidates that could not possibly be frequent. This is done using
the downward closure property of generalized and non-generalized
itemsets. Under Definition 2, the generalized item P in Figure 5 is
the smallest subset of all other possible generalized itemsets, with
respect to G, because P or a descendant of P must be in any gen-
eralized itemset. Conversely, ABK is the largest superset. Thus,
when we say the SET algorithm is performed in a top-down man-
ner, we mean enumeration starts with the most general (smallest
subset) candidates, to the most concrete (largest superset). Thus,
the following subset-superset relationship exists, with respect to
G, between P , ABK, and any arbitrary generalized itemset I:
P ⊆G I ⊆G ABK. All candidate generalized itemsets enu-
merated by the SET algorithm using the simplified taxonomy in
Figure 5, are shown in Figure 6. The reader is encouraged to see
[7] for full details. Next, one must answer how the probability dis-
tribution of XI for an arbitrary I ⊆ A is calculated. Recall that
XI follows a Poisson binomial distribution. In [4], Bernecker et
al. disseminated a method that uses a dynamic programming ap-
proach to calculate Pr(XI ≥ minsup) in O(|T |) time. To do so,
calculating Pr(XI ≥ i) is recast into the problem of calculating
Pr(XI ≥ i, j), which is the probability of XI being greater than
or equal i in the first j transactions of T .

Thus, the recursive equation used to drive the dynamic program-
ming algorithm is (the reader is encouraged to see [4] for full de-
tails):

Pr(XI ≥ i, j) = Pr(XI ≥ i− 1, j − 1) · Pr(I ⊆ tj)
+ Pr(XI ≥ i, j − 1) · (1− Pr(I ⊆ tj))

where Pr(XI ≥ 0, j) = 1 ∀.0 ≤ j ≤ |T |

Pr(XI ≥ i, j) = 0 ∀.i > j

4. EXPERIMENTAL EVALUATION
In order to perform an experimental evaluation of the PGFIM

algorithm, two types of input must be provided: a taxonomy G and
an uncertain transaction databases T . In the next two subsections
we tackle how each in turn is generated.

4.1 Taxonomy Generation

Previous research has tended to use small experimental taxonomies,
which usually have a depth of between 1 and 5. Further, they do not
take into account the possibility of an item having more than one
direct parent, which is feasible given that the taxonomy is a generic
connected directed acyclical graph. The scheme which this paper
devises allows for a rich diversity of possible experimental tax-
onomies to be generated using parameters V and E, the number of
non-leaf nodes (excluding the empty root) and the number of uni-
formly distributed random edges connecting those nodes, respec-
tively. Once the the number of non-leaf nodes and random edges
have been created, a root node is created to connect all weakly con-
nected components of the graph. Lastly, |AL| nodes are created
(representing the items of the databases) are equally and randomly
distributed as children among the nodes of the graph which have no
descendants. By adjusting these parameters, a rich diversity of tax-
onomies can be generated. The smaller the value of V , the fewer
internal (generalized) item nodes there will be, and the lower the
depth of the taxonomy—if E is kept constant. If V is constant,
a larger E results in a more connected (fewer weakly connected
components) and possibly deeper graph. V should be limited by
the number of leaf nodes, |AL|, because |AL| leaf nodes will be
evenly distributed and connected to the nodes without children in
the generated graph. In this paper, we limit V to be less than or
equal to |AL|. Once V is fixed, we use E to control the connect-
edness and depth of the graph generated. Increasing E causes the
graph to become more connected and its depth to increase. 3

4.2 Dataset Generation
All datasets used in this evaluation were taken from the Frequent

Itemset Mining Dataset Repository fimi.ua.ac.be/data/. However,
since the datasets are exact or certain, transforming them into un-
certain datasets was required. The procedure used to perform this
transformation was done as follows: for each certain item in a trans-
action, the item is copied to the new uncertain dataset; a random
probability p ∈ (0, 1] is then chosen from the beta distribution with
parameters α = 5 and β = 1 for this item; finally, p is assigned
to the item with probability 1/2 and 1 − p is assigned with proba-
bility 1/2. This method of transforming a certain itemset database
into an uncertain one, is different from other methods, in which
the probability p is drawn from a uniform distribution [4, 3], or
from a normal distribution [8]. We believe drawing probabilities
from the beta distribution gives a possibly better representation of
a real-world dataset, in which items are close either to existing or
not, rather than being uniformly random (uniform distribution), or
“ho-hum” average (normal distribution).

4.3 Algorithm Performance
All experiments were carried out on a Intel Core 2 Quad-Core

desktop computer, with 4GB of RAM, running Mac OS X v10.6;
further, all code was written in C/C++ using Apple’s LVM v3.0
compiler. All code and datasets used can be downloaded from
www.erichpeterson.com/publications/. Experiments where carried
out on both the Chess and Mushroom datasets. All execution times
include the time needed to extend the database to include the prob-
ability of a generalized item occurring. When the probability of a
generalized item occurring within a particular transaction is needed,
the database is extended to include the existential probability for all
transactions in the database. For each of the datasets, we evaluate
the algorithm’s performance in time when varying minsup/n and
τ . The results for the Chess datasets can be seen in Figure 7 and
3Further details can be found in this paper’s tech report at
www.erichpeterson.com/publications/.

http://fimi.ua.ac.be/data/
http://www.erichpeterson.com/publications/
http://www.erichpeterson.com/publications/


for the Mushroom dataset in Figure 8. For each data point in
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Figure 7: Chess Dataset

Figures 7(a) and 8(a), five random taxonomies were generated and
the average of the five were taken. In Figure 7(a), one sees time
in seconds as a function of minsup/n (0.5 ≤ minsup/n ≤ 0.9)
and τ = 0.9—for each of the taxonomies, i.e., V37E19, V74E37,
V37E0, and V74E0. The range of parameters tested were chosen
to cover a majority (above 50%) of frequency values, and to per-
form the experiments in a reasonable amount of time. Also, in
Figure 7(b), one sees time as a function of τ (0.5 ≤ τ ≤ 0.9) and
minsup/n = 0.5—for each of the taxonomies. Notice the effect
of τ is virtually nil.

In Figure 8(a) and Figure 8(b) one sees the effect of varying
minsup/n and τ , respectively, for the taxonomies V37E19, V74E37,
V37E0, and V74E0.

5. CONCLUSION
In this paper, we have disseminated the new concept of a proba-

bilistic generalized frequent itemset (PGFI)—rooted in probabilis-
tic mathematics and possible world semantics. Further, an algo-
rithm to mine for such concepts was presented. Lastly, an ex-
perimental evaluation of the new algorithm—named PGFIM—was
shown.
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