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Abstract

Researchers have recently defined and presented the theoretical
concepts—rooted in possible world semantics—and algorithm neces-
sary for mining so-called probabilistic frequent itemsets in uncertain
databases. Further, there exist algorithms for mining so-called gener-
alized itemset in certain databases, where a taxonomy exists relating
concrete items to abstract (generalized) items not in the database.
Currently, no research has been done in formulating a theory and
algorithm for mining generalized itemsets from uncertain databases.
Using probability theory and possible world semantics, we formulate
a method for calculating the probability a generalized item will occur
within an uncertain transaction. Thus, the new concept of a proba-
bilistic frequent generalized itemset is presented; as well as, an algo-
rithm to mine these new concepts.
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1 Introduction

Data mining generalized frequent itemsets (GFIs) and generalized association
rules was first proposed by Srikant et al. [19]. The methods employed in what
will sometimes be referred to as generalized itemset mining in this paper, take
much inspiration from the algorithms and concepts of traditional frequent
itemset and association rules mining (sometimes referred to as traditional
itemset mining in this paper) [2, 3, 16]1. Generalized itemset mining differs
from traditional itemset mining, through the addition of a taxonomy G to an
itemset database T . This taxonomy forms an is-a relationship among items,
and is represented as an directed acyclical graph. An example taxonomy
used throughout this paper is shown in Figure 1. In G one sees that apple
and banana is-a fruit, and fruit is-a produce. Further, within G there exists
a ancestor/descendent relationship among all certain items within G. For
example, an item a is said to be a descendent of a′, if and only if, there
exists a path from a′ to a. Conversely, a′ is called an ancestor of a. An
arbitrary ancestor of an item a is denoted as â. With the addition of a
taxonomy, one can develop new problems and discover knowledge previously
not easily discernible. One such problem, is to find “rules that span different
levels of the taxonomy.”[19]. This problem is especially important as items at
lower levels of the taxonomy may not have the minimum support necessary to
qualify as frequent; however, items higher up in the taxonomy may be because
“department stores or supermarkets typically have hundreds of thousands of
items, [and] the support for rules involving only leaf items (typically UPC or
SKU codes) tends to be extremely small.” [19]

Another data mining problem, which has received a fair amount of more
recent research, is that of mining for so-called probabilistic frequent item-
sets (PFIs). First proposed by Bernecker et al. [5], this work concerns itself
with mining of frequent itemsets in uncertain databases; that is, databases in
which each item in the database T has an associated existential probability—
denoting the probability of its occurrence within a transaction. In this work,
an arbitrary itemset is said to be probabilistically frequent if its frequent-
ness probability, defined as the probability the item will have a support
greater than or equal to a user-defined minimum support threshold minsup,
is greater than or equal to a user-defined confidence threshold τ . Thus, to

1Although generalized itemset mining was discovered after traditional itemset mining,
as the name implies, generalized itemset mining constitutes a general case of the special
case of itemset mining.
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Figure 1: Example Taxonomy G

find the frequentness probability of a particular itemset, a discrete proba-
bility distribution function is calculated, which describes the probability of
the itemset’s support being a certain value, and is based on possible world
semantics.

Given an uncertain database T and a taxonomy G, no method currently
exists to mine for generalized frequent itemsets in uncertain databases. The
major obstacles involved to formulate such a method is two-fold: 1) A method
needs to be formulated to calculate the probability of a generalized item oc-
curring within a particular transaction according to possible world semantics;
2) An algorithm is needed which will enumerate candidate itemsets (includ-
ing generalized items) in an efficient manner. In this paper, we formulate a
method calculating the probability of a particular generalized item occurring
within a particular transaction. This method can be used to extend the orig-
inal uncertain database, to then mine for so-called probabilistic generalized
frequent itemsets (PGFIs). We further present an algorithm for mining these
concepts from uncertain databases, and provide an experimental evaluation
of the algorithm.

The rest of the paper is laid out as follows: section 2 provides prelimi-
nary concepts necessary for understanding the rest of the paper (including
concepts such as generalized frequent itemset mining and the uncertain data
model used); section 3 disseminates the new PGFI concepts and algorithm
PGFIM for probabilistic generalized frequent itemset mining; section 4 pro-
vides the reader with an experimental evaluation of the newly formulated
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algorithm; and finally, section 6 provides a conclusion.

2 Preliminaries

2.1 Generalized Frequent Itemsets

The taxonomy G is represented as a weakly connected directed acyclical
graph; formally, as the pair G = (A,E), where A and E both sets, and
E ⊆ A × A. The elements of A are vertices, which represent distinct
items; and the elements of E represent directed edges between elements of
A = {a1, a2, . . . , am}. If a directed edge between a vertex ai and aj, aj is
called a child of ai, and conversely, ai is called the parent of aj. Further, G
has the constraint that it is weakly connected, that is, ignoring the direction
of the edges within G, a path must exist from all vertices to all other ver-
tices. Further, it must also be acyclical, i.e., there is no path from a node
to itself. A taxonomy G contains vertices representing both items found in
the databases (leaf items), and those which are generalized or abstracted
(non-leaf) items. A vertex a ∈ A represents a non-leaf item, if and only
if, a has at least one child. Also, a vertex a represents a leaf item, if and
only if, a has no children. The set of vertices representing items are par-
titioned into the two disjoint sets: AL = {a | a is a leaf item in G} and
ANL = {a | a is a non-leaf item in G}. Also, let the taxonomy G define the
relationships (e.g., ancestor and descendent) among each of the items a ∈ A.
If a path in G exists from some item a′ via directed edges to another item
a, we say a′ is an ancestor of a; and conversely, that a is a descendent of a′.
Let the set D(a) = {x | x ∈ AL ∧ x is a descendent of a} denote the set of
all descendent leaf items in G of an arbitrary non-leaf item a ∈ ANL.

A generalized itemset I is defined to be any subset of A, i.e., I ⊆ A.
Normally, only leaf items are found in the actual database, i.e., elements
of AL (alluded to above), and in this paper this is assumed to be the case.
That is, given a database T = {t1, t2, . . . , tn}, each tj is a subset of only
AL. For itemsets which contain only leaf items, the set inclusion and subset
(i.e., ∈ and ⊆, respectively) notation meanings are intuitive. However, given
the presence of non-leaf (generalized) item, the previously mentioned notions
must be redefined.

Definition 1 (Generalized Item Set Inclusion) An item a ∈ A is an
element of a set S with respect to taxonomy G, denoted as a ∈G S, if and
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only if, a ∈ S, or there exists an a′ ∈ D(a) such that a′ ∈ S.

Definition 2 (Generalized Itemset Subset-Superset) An itemset I ⊆
A is a subset of a set S with respect to taxonomy G, denoted as I ⊆G S, if
and only if, for each item a ∈ I, a ∈G S.

Further, we say that the support of an arbitrary generalized itemset I ⊆ A
over the database T , denoted SupT (I), is the the number of transactions in
T that contains I with respect to taxonomy G, and is defined formally as:

SupT (I) = |{t | I ⊆G t ∧ t ∈ T )}| (1)

For example, if given the example itemset database in Figure 2 and the
taxonomy in Figure 1, the support of the itemset {fruit, cheese} is 2, because
{fruit, cheese} ⊆G t2, {fruit, cheese} ⊆G t3, but {fruit, cheese} *G t1.

TID Itemset
t1 apple, banana, kale
t2 apple, banana, cheese
t3 apple, milk, cheese

Figure 2: Example Database

If the support of a generalized itemset I ⊆ A is greater than or equal
to some user-defined threshold minsup, then I is considered frequent. Thus,
the definition of a generalized frequent itemset (GFI) is given below.

Definition 3 Given a taxonomy G and an itemset database T = {t1, t2, . . . , tn},
where each tj ⊆ AL, a generalized itemset I ⊆ A is considered a gener-
alized frequent itemset (GFI), if and only if, SupT (I) ≥ minsup, where
minsup ∈ [0, n] is a user-defined threshold.

Thus, the problem statement for mining GFIs, is to discover for all (gen-
eralized) itemsets I ⊆ A, whose support is greater than or equal minsup.

2.2 Uncertain Data Model

The major difference between traditional frequent itemset mining and prob-
abilistic frequent itemset mining, is that in the traditional case, one knows
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with certitude whether or not an item occurs within a particular transaction
or not; whereas, in the probabilistic case, one may only have the probability
of an item occurring within a particular transaction. Let T = {t1, t2, . . . tn}
be an uncertain database, in which each transaction tj consists of a set of
pairs (ai, P r(ai ∈ tj)), where ai ∈ A and Pr(ai ∈ tj), denotes the proba-
bility of item ai occurring in transaction tj. The probability of ai occurring
within transaction tj, is between 0 and 1. An uncertain item ai within a
transaction tj, is one which Pr(ai ∈ tj) ∈ (0, 1). If Pr(ai ∈ tj) = 1 then the
item ai is known to occur with certitude and it is a certain item in tj

2; oth-
erwise ai is called an uncertain item. Let each transaction t be partitioned
into two disjoint sets—one containing all uncertain items u1u2 · · ·uLt , i.e.,
Pr(ui ∈ t) ∈ (0, 1), and the other which contains all certain items c1c2 · · · cNt ,
i.e., Pr(ci ∈ t) = 1. Figure 3 shows an example uncertain database, where
t1 has two uncertain items, apple and banana with existential probabilities
0.89 and 0.99, respectively, and one certain item kale. Transactions t2 and
t3 both have three uncertain items and no certain items.

TID Uncertain Itemset
t1 (apple, 0.89), (banana, 0.99), (kale, 1.0)
t2 (apple, 0.4), (banana, 0.45), (cheese, 0.12)
t3 (apple, 0.9), (milk, 0.95), (cheese, 0.20)

Figure 3: Example Uncertain Database

A possible world of transaction t is a concrete instance of t which contains
all certain items c1c2 · · · cNt and either contains each uncertain item ui (1 ≤
i ≤ Lt) or not. Therefore, a possible world can be derived from an Lt-bit
binary string v = v1v2 · · · vLt ∈ {0, 1}Lt through a bijection from the set
of Lt-bit binary strings to the set of possible worlds of t, denoted as W (t),
φ : {0, 1}Lt → W (t), defined as follows:

φ(v) = φ(v1v2 · · · vLt) = b1b2 · · · bLtc1c2 · · · cNt

where

bi =

{
ui, if vi = 1

ε, if vi = 0

2Items having a probability of zero, of occurring within a particular transaction are not
shown in the uncertain database—as they certainly do not occur.

6



for i = 1, . . . , Lt and ε is the empty symbol. Since there are 2Lt Lt-bit binary
strings in {0, 1}Lt , we must have 2Lt possible worlds in W (t). Let a possible
world in W (t) be denoted by w(t) = φ(v). The probability of possible world
w(t) = φ(v), denoted by Pr(w(t)), is calculated by:

Pr(w(t)) = Pr(φ(v), t)

= Pr(φ(v1v2 · · · vLt), t)

=
∏
vi=1

Pr(ui ∈ t) ·
∏
vi=0

(1− Pr(ui ∈ t))
(2)

if independence among the uncertain items if assumed. From (2), we have∑
v∈{0,1}Lt

Pr(φ(v), t) = 1

In other words, (2) defines a probability distribution for all possible worlds
of W (t).

In a traditional (certain) itemset database, the probability of itemset I
occurring in transaction t is 1 if I ⊆ t, or 0 otherwise. In contrast, for an
uncertain itemset database, the probability of I occurring in t, denoted as
Pr(I ⊆ t), is the sum of the probabilities of all the possible worlds w ∈ W (t)
which contain I. Let WI(t) be the set of possible worlds, which contain I;
that is, WI(t) = {w | w ∈ W (t)∧I ⊆ w}. Further, recall that the function φ is
a bijection, and therefore, its inverse φ−1 is a mapping from W (t) to {0, 1}Lt ;
that is: φ−1 : W (t)→ {0, 1}Lt . Let S be a subset of W (t). We use φ−1(S) to
denote the range of function φ−1 from S; that is: φ−1(S) = {φ−1(w) | w ∈ S}.
Thus, φ−1(WI(t)) is the set of all Lt-bit binary strings, whose corresponding
possible worlds contain I, that is, for all v ∈ φ−1(WI(t)), I ⊆ φ(v). Finally,
let φ(v)i be the i-th element of φ(v), 1 ≤ i ≤ Lt + Nt, and vi be the i-th
element of v, i ≤ i ≤ Lt. With that, one may calculate Pr(I ⊆ t) as:
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Pr(I ⊆ t)

=
∑

v∈φ−1(WI(t))

Pr(φ(v), t)

=
∑

v∈φ−1(WI(t))

(∏
vi=1

Pr(ui ∈ t) ·
∏
vi=0

(1− Pr(ui ∈ t))

)
=

∏
φ(v)i∈I

Pr(ui ∈ t) ·
∏

φ(v)i /∈I

(Pr(ui ∈ t) + (1− Pr(ui ∈ t))

=
∏

φ(v)i∈I

Pr(ui ∈ t)

=
∏
ui∈I

Pr(ui ∈ t)

(3)

Since Pr(ci ∈ t) = 1 for a certain item in t, one can calculate Pr(I ⊆ t)
simply as:

Pr(I ⊆ t) =
∏
a∈I

Pr(a ∈ t) (4)

The set of all possible worlds W induced by all transactions in the uncer-
tain database T{t1, . . . , tn} is the Cartesian product of W (tj), j = 1, . . . , n
as follows:

W = W (t1)×W (t2)× · · · ×W (tn) (5)

TID Uncertain Itemset
t1 (banana, 0.99)
t2 (banana, 0.45), (kale : 0.4)

(a) Simplified Example

Possible Worlds
W (t1) 〈 〉, 〈banana〉
W (t2) 〈 〉, 〈banana〉, 〈kale〉, 〈banana, kale〉

(b) Possible Worlds

Figure 4: Simple Example of Possible Worlds
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TID Possible Worlds
w1 〈 〉, 〈 〉
w2 〈 〉, 〈banana〉
w3 〈 〉, 〈kale〉
w4 〈 〉, 〈banana, kale〉
w5 〈banana〉, 〈 〉
w6 〈banana〉, 〈banana〉
w7 〈banana〉, 〈kale〉
w8 〈banana〉, 〈banana, kale〉

Figure 5: W (t1)×W (t2)

A simplified example uncertain database is shown in Figure 4(a), and the
possible worlds of each transaction is shown in Figure 4(b). (Each transaction
of each possible world in W (tj) is enclosed by 〈 〉.). Further, all possible
worlds w ∈ W induced by the entire database is shown in Figure 5.

If the assumption of independence between the transactions in T is valid,
the probability of a possible world w = (w(t1), w(t2), . . . , w(tn)) ∈ W can be
calculated as follows:

Pr(w) =
n∏
i=1

Pr(w(ti)) (6)

where Pr(w(t)) is calculated by (2).
In a traditional (certain) itemset database T = {t1, . . . , tn}, the support

of itemset I in transaction t, denoted Supt(I), is 1 if I ⊆ t or 0 otherwise.
The support of I over the entire database T , denoted SupT (I) is:

SupT (I) = Supt1(I) + Supt2(I) + · · ·+ Suptn(I) (7)

Notice (7) is equal to the number of transactions that contain I, i.e., SupT (I) =
|{t | I ⊆ t ∧ t ∈ T}|.

However, in an uncertain database T , the support of I in transaction tj,
Suptj(I), is no longer a concrete 0 or 1. Instead, it is a random variable XI

j

following a Bernoulli distribution with parameter pj, where pj = Pr(XI
j =

1) = Pr(I ⊆ tj) (calculated by (4)) and 1− pj = Pr(XI
j = 0) = Pr(I * tj)

(or the probability of success and failure, respectively). Therefore, in an
uncertain database T , the support of I over the entire database T is a random
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variable XI =
∑n

j=1X
I
j (according to (7)). The random variable XI follows

the Poisson binomial distribution with parameters pj = Pr(I ⊆ tj), j =
1, . . . , n, if the assumption of independence between transactions is made.

The probability that XI = i, (0 ≤ i ≤ n), is:

Pr(XI = i) =
∑

S⊆T,|S|=i

∏
tj∈S

pj ·
∏

tj∈T−S

(1− pj)

 (8)

Equation (8) is true, because the set S ⊆ T has exactly i transactions, and the
probability of an arbitrary possible world w ∈ W in which all i transactions
in S contain I and the rest (n - i) do not, is equal to

∏
tj∈S pj ·

∏
tj∈T−S(1−pj).

Given minsup and a confidence threshold τ ∈ [0, 1], an itemset I is said to
be frequent with confidence τ , if and only if, Pr(XI ≥ minsup) ≥ τ . One
can calculate Pr(XI ≥ minsup) using the following formula:

Pr(XI ≥ minsup)

=
∑

S⊆T,|S|≥minsup

∏
tj∈S

pj ·
∏

t∈T−S

(1− pj)

 (9)

Definition 4 Given an uncertain database T and an itemset I, I is a prob-
abilistic frequent itemset (PFI) with confidence τ , if and only if Pr(XI ≥
minsup) ≥ τ , where minsup ∈ [0, n] and τ ∈ [0, 1] are user-defined thresh-
olds. [5]

Finally, the problem of mining probabilistic frequent itemsets, is to dis-
cover all itemsets I ⊆ A such that Pr(XI ≥ minsup) ≥ τ , where minsup
and τ are user-defined thresholds.

3 Mining Generalized Probabilistic Frequent

Itemsets

In section 2.1, the problem statement and theory behind the mining of arbi-
trary generalized frequent itemsets I ⊆ A = AL ∪ ANL—given a taxonomy
G and an itemset database T , in which each transaction t is a subset of
AL—was disseminated. Further, in section 2.2, the problem statement and
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theory behind the mining of probabilistic frequent itemsets from uncertain
databases was presented. In that domain, no taxonomy exists. Instead each
transaction t is a set of pairs (ai, P r(ai ∈ t), where ai ∈ A and the Pr(ai ∈ t)
denotes the probability of item ai appearing in transaction t. So far, no re-
search has been done to formulate a method for mining generalized itemsets
from uncertain databases.

Definition 5 Given a taxonomy G = (A,E), A = AL∪ANL, and an uncer-
tain database T = {t1, . . . , tn}, which only contains items in AL, an itemset
I ⊆ A is considered a probabilistic generalized frequent itemset (PGFI) with
confidence τ , if and only if, Pr(XI ≥ minsup) ≥ τ , where minsup ∈ [0, n]
and τ ∈ [0, 1] are user-defined thresholds.

Thus, the problem statement for probabilistic generalized frequent itemset
mining, is to discover all itemsets I ⊆ A, such that Pr(XI ≥ minsup) ≥ τ ,
where minsup and τ are user-defined thresholds.

There are two major problems which need solving in order to success-
fully mine for PGFIs: 1) a way to calculate the existential probability of a
generalized itemset occurring within an uncertain transaction; 2) a way to
efficient calculate the aforementioned probability, and to enumerate possible
generalized itemset candidates. The first problem is solved in section 3.1,
and the second in section 3.2.

3.1 Calculating Existential Probabilities for General-
ized Itemsets

The first major problem mining for PGFIs, is to formulate a method for
calculating the probability that a generalized item, g ∈ ANL, occurs within
a particular transaction t, denoted as Pr(g ∈G t). This should be the sum
of the probabilities of all possible worlds φ(v) that contains at least one leaf
item that is a descendent of g. Recall that D(g) is the set of leaf nodes in
AL that are descendants of g. In other words,

Pr(g ∈G t) =
∑

φ(v)∩D(g)6=∅

Pr(φ(v), t) (10)

Using (10) one is able to calculate the existential probability of an arbitrary
non-leaf (generalized) item g occurring within a transaction t. However, (10)
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requires the enumeration of all possible worlds, and is therefore infeasible for
all but trivial databases. Thus, similar to (3), we re-write the (10) as:

Pr(g ∈G t) =
∑

φ(v)∩D(g)6=∅

Pr(φ(v), t)

= 1−
∑

φ(v)∩D(g)=∅

Pr(φ(v), t)

= 1−
∑

D(g)⊆φ(v)

Pr(φ(v), t)

= 1−
∏

x∈D(g)

(1− Pr(x ∈ t))

·
∏

y/∈D(g)

(Pr(y ∈ t) + (1− Pr(y ∈ t)))

= 1−
∏

x∈D(g)

(1− Pr(x ∈ t))

(11)

where φ(v) is the complement of φ(v), i.e., φ(v) = AL(t)− φ(v). Here AL(t)
is the set of items in t, u1 · · ·uLtc1 · · · cNt , and possible world φ(v) is a subset
of AL. If x ∈ D(g) is a certain item cj, we have Pr(x ∈ t) = 1, then
Pr(g ∈ t) = 1. This is consistent with the understanding that if a leaf
descendent of a generalized item g occurs in t with certitude, then g also
occurs in t with certitude.

Example 1 Calculating the probability of the generalized item fruit occur-
ring in transaction t1 in Figure 3, given that D(fruit) = {apple, banana},
can be done as follows: Pr(fruit ∈G t1) = 1 − (1 − Pr(apple ∈ t1)) · (1 −
Pr(banana ∈ t1)) = 0.9989.

When calculating the probability of a generalized item, one may choose to
do so in an ad-hoc manner, or once there is a need to calculate the probability
of the item, it can be done for every transaction in T and the corresponding
probability added to each transaction—creating an extended database. In
this way, future need for the probability can be simply “looked-up”.
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3.2 Efficient Enumeration & Probability Calculation

To discover all PGFIs, two salient questions must be addresses: 1) what type
of enumeration scheme will be used to guide the mining process? 2) how will
the probability distribution of XI for an arbitrary I ⊆ A will be calculated?

To simplify discussion of the enumeration technique used, the taxonomy
shown in Figure 1 has been recreated in Figure 6, where each item has been
abbreviated using the first letter of the corresponding item, and the general-
ized item Dairy (and its descendants) have been pruned.

In [20], Sriphaew et al. present the SET algorithm. That algorithm uses an
efficient technique to enumerate candidate generalized itemsets in a certain
itemset database. In this paper, we choose to use its fundamental enumera-
tion scheme to determine which candidate generalized itemsets to enumerate
and in which order. The SET algorithm’s enumeration technique is performed
in a top-down fashion, which uses both the subset-superset relationship, de-
fined in Definition 2, over the items in A and the parent-child relationships
defined by the taxonomy G. In simple terms, the search space is enumer-
ated in such a fashion, as to ensure a candidate is only generated if all of
its subsets are also frequent; and thus, eliminating the gratuitous enumera-
tion of candidates that could not possibly be frequent. This is done using
the downward closure property of generalized and non-generalized itemsets.
Under Definition 2, the generalized item P in Figure 6 is the smallest subset
of all other possible generalized itemsets, with respect to G, because P or
a descendent of P must be in any generalized itemset. Conversely, ABK
is the largest superset. Thus, when we say the SET algorithm is performed
in a top-down manner, we mean enumeration starts with the most general
(smallest subset) candidates, to the most concrete (largest superset). Thus,

13



the following subset-superset relationship exists, with respect to G, between
P , ABK, and any arbitrary generalized itemset I: P ⊆G I ⊆G ABK. All
candidate generalized itemsets enumerated by the SET algorithm using the
simplified taxonomy in Figure 6, are shown in Figure 7. In Figure 8, we see
the result of the enumeration tree, given that the generalized item V is found
to be infrequent. In particular, one sees that all itemsets containing V or
any superset of V i.e., any children of V , are not enumerated. The reader is
encouraged to see [20] for full details.

Next, one must answer how the probability distribution of XI for an
arbitrary I ⊆ A is calculated. Recall that XI follows a Poisson binomial
distribution. In [5], Bernecker et al. disseminated a method that uses a dy-
namic programming approach to calculate Pr(XI ≥ minsup) in O(|T |) time.
To do so, calculating Pr(XI ≥ i) is recast into the problem of calculating
Pr(XI ≥ i, j), which is the probability of XI being greater than or equal i
in the first j transactions of T .

Thus, the recursive equation used to drive the dynamic programming
algorithm is (the reader is encouraged to see [5] for full details):

Pr(XI ≥ i, j) = Pr(XI ≥ i− 1, j − 1) · Pr(I ⊆ tj)

+ Pr(XI ≥ i, j − 1) · (1− Pr(I ⊆ tj))

where Pr(XI ≥ 0, j) = 1 ∀.0 ≤ j ≤ |T |

Pr(XI ≥ i, j) = 0 ∀.i > j

4 Experimental Evaluation

In order to perform an experimental evaluation of the PGFI algorithm, two
types of input must be provided: a taxonomy G and an uncertain transaction
databases T . In the next two subsections we tackle how each in turn is
generated.

4.1 Taxonomy Generation

Previous research has tended to use small experimental taxonomies, which
usually have a depth of 1–5. Further, they do not take into account the
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possibility of an item having more than one direct parent, which is feasible
given that the taxonomy is a generic connected directed acyclical graph. The
scheme which this paper devises allows for a rich diversity of possible exper-
imental taxonomies to be generated using parameters V and E, the number
of non-leaf nodes (excluding the empty root) and the number of uniformly
distributed random edges connecting those nodes, respectively. Once the
the number of non-leaf nodes and random edges have been created, a root
node is created to connect all weakly connected components of the graph.
Lastly, |AL| nodes are created (representing the items of the databases) are
equally and randomly distributed as children among the nodes of the graph
which have no descendants. Figures 9, 10, and 11 show random taxonomies
generated with V = 5 and various E, where solid arrows indicate random
edges created with parameter E, and nodes representing the |AL| items of
database T in the square box. Dashed arrows denote both the connecting
of the weakly connected components of the initially created graph, and the
connecting of leaf |AL| items to the graph. Figure 9 shows a random tax-
onomy generated for with E = 0. In Figure 10 two random taxonomies are
shown with E = 3. Lastly, in Figure 11, two possible random taxonomies
are shown with E = 5.

By adjusting these parameters, a rich diversity of taxonomies can be gen-
erated. The smaller the value of V , the fewer internal (generalized) item
nodes there will be, and the lower the depth of the taxonomy—if E is kept
constant. If V is constant, a larger E results in a more connected (fewer
weakly connected components) and possibly deeper graph. V should be lim-
ited by the number of leaf nodes, |AL|, because |AL| leaf nodes will be evenly
distributed and connected to the nodes without children in the generated
graph. In this paper, we limit V to be less than or equal to |AL|. Once V is
fixed, we use E to control the connectedness and depth of the graph gener-
ated. For example, E = 0 gives a single-level completely disconnected graph.
After adding the root node and connecting the leaf nodes, the taxonomy will
be a three-level flat tree as shown in Figure 9. Increasing E causes the graph
to become more connected and its depth to increase. Figure 10 shows two
graphs generated with V = 5 and E = 3, with two connected components
and three levels. After adding the root node and connecting the leaf nodes,
the two taxonomies have five levels, but have different structures. Figure 11
shows two graphs generated with V = 5 and E = 5.

To facilitate the creation of experimental taxonomies, the statistical anal-
ysis software R and the package igraph was used to craft a script to randomly
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Figure 11: Example Random Taxonomies V 5E3
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generate various taxonomical structures, and does so in the following steps:

1. A lower triangular binary matrix is created of size V . Being a lower
triangular matrix, ensures the graph is directed and acyclical. A 1 in
the i-th row and j-th column represents a directed edge form vertex i
to vertex j.

2. Exactly E number of 1’s are placed in a uniform random manner into
the matrix, where E denotes the number of edges in the initial taxon-
omy.

3. The matrix is used as input to the igraph R package, to create a graph
in the igraph format.

4. All weakly connected components are found in the graph. A root vertex
is created, and a directed edge from the root to all nodes which have
no incoming edges—in each weakly connected component—is created.

5. A vertex is then created for each of the leaf items in the uncertain
database; that is |AL| vertices are created.

6. Each of the |AL| leaf vertices are evenly added as children to all vertices
in the taxonomy which have no children.

Figure 12 shows the six steps above for creating a taxonomy of V = 4 and
E = 2 (denoted as V 4E2)—and 4 leaf nodes, i.e., |AL| = 4. For a given
dataset, four taxonomies are generated, all following the naming convention:
V <parmater V> E <parameter E>; specifically, the four taxonomies cre-
ated will be named V d |AL|

2
eE0, V d |AL|

2
eEd |AL|

4
e, V |AL|E0, and V |AL|Ed |AL|

2
e.

For example, if |AL| = 4, then the following four taxonomies will be created:
V 2E0, V 2E1, V 4E0, and V 4E2.

4.2 Dataset Generation

All datasets used in this evaluation were taken from the Frequent Itemset
Mining Dataset Repository <http://fimi.ua.ac.be/data/>. However, since
the datasets are exact or certain, transforming them into uncertain datasets
was required. The procedure used to perform this transformation was done
as follows: for each certain item in a transaction, the item is copied to the
new uncertain dataset; a random probability p ∈ (0, 1] is then chosen from
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(3)
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Figure 12: Taxonomy Generation Steps
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the beta distribution with parameters α = 5 and β = 1 for this item; finally,
p is assigned to the item with probability 1/2 and 1 − p is assigned with
probability 1/2. This method of transforming a certain itemset database into
an uncertain one, is different from other methods, in which the probability
p is drawn from a uniform distribution [5, 4], or from a normal distribution
[23]. We believe drawing probabilities from the beta distribution gives a
possibly better representation of a real-world dataset, in which items are
close either to existing or not, rather than being uniformly random (uniform
distribution), or “ho-hum” average (normal distribution).

4.3 Algorithm Performance

All experiments were carried out on a Intel Core 2 Quad-Core desktop com-
puter, with 4GB of RAM, running Mac OS X v10.6; further, all code was writ-
ten in C/C++ using Apple’s LVM v3.0 compiler. All code and datasets used
can be downloaded from <http://www.erichpeterson.com/publications/>.
Experiments where carried out on both the Chess and Mushroom datasets.
All execution times include the time needed to extend the database to in-
clude the probability of a generalized item occurring. When the probability
of a generalized item occurring within a particular transaction is needed, the
database is extended to include the existential probability for all transactions
in the database. For each of the datasets, we evaluate the algorithm’s per-
formance in time when varying minsup/n and τ . The results for the Chess
datasets can be seen in Figure 13 and for the Mushroom dataset in Figure
14.

For each data point in Figures 13(a) and 14(a), five random taxonomies
were generated and the average of the five were taken. In Figure 13(a), one
sees time in seconds as a function of minsup/n (0.5 ≤ minsup/n ≤ 0.9)
and τ = 0.9—for each of the taxonomies, i.e., V37E19, V74E37, V37E0, and
V74E0. The range of parameters tested were chosen to cover a majority
(above 50%) of frequency values, and to perform the experiments in a rea-
sonable amount of time. Also, in Figure 13(b), one sees time as a function of
τ (0.5 ≤ τ ≤ 0.9) and minsup/n = 0.5—for each of the taxonomies. Notice
the effect of τ is virtually nil.

In Figure 14(a) and Figure 14(b) one sees the effect of varying minsup/n
and τ , respectively, for the taxonomies V37E19, V74E37, V37E0, and V74E0.
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Figure 13: Chess Dataset
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5 Related Work

In [19], Srikant et al. develop a naive algorithm called Basic, which trans-
forms the each original transaction t into a transaction t′, by adding each de-
scendent of each item a ∈ t to it. This new extended transaction database can
then be mined using traditional itemset mining techniques—in particular the
Apriori algorithm previously developed by them. Afterwards, the authors
develop the more sophisticated algorithms Cumulate, Stratify, Estimate,
and EstMerge.

In [9], Han et al. the authors present a concept similar but decidedly dif-
ferent from generalized itemset mining. That work is similar to generalized
itemset mining in that a taxonomy is given, and association rules are gen-
erated from this taxonomy. However, “a multi-level itemset is restricted to
only contain items from the same level of” [12] the taxonomy. Another note-
worthy aspect of this work, is the ability to set different minimum support
and confidence thresholds for different levels of the taxonomy.

Hipp et al. in [10], using insights gleamed from a study of the problem, de-
velop the depth-first-search (DFS) algorithm Prutex which outperforms the
breadth-first-search (BFS) Apriori-style algorithms of Srikant et al. [19].
Their experiments support the work in [11], and conclude that the counting
of support of candidate C = I ∪ I ′ through the intersection of I’s and I ′’s
tid-list (denoted as I.tids, which is simply a list of transaction identifiers
which support itemset I), and taking the magnitude of the resulting list,
tends to be less costly then an Apriori BFS style algorithm when certain
conditions hold. (As an example of this operation: if I.tids = {1, 2, 3} and
I ′.tids = {2, 3, 4}, then the support of C = I ∪ I ′ would be calculated by the
intersection C.tids = I.tids ∩ I ′.tids (C.tids = {2, 3}) and then evaluating
|C.tids|, which equals 2.) They note these conditions are two-fold: 1) When
there is a shrinking of the “average gap between the number of actual oc-
currences of a candidate C = I ∪ I ′ and min({|I.tids|, |I ′.tids|}).”; 2) When
there is “a growing average size of candidates and frequent itemsets.” The
authors note that in generalized itemset mining, these two conditions tend
to be true. However, as noted in [21] “a limitation of this work is the cost
of checking whether their ancestor itemsets are frequent or not using a hash
tree.”

In [20], Sriphaew et al. disseminates the SET algorithm, which is similar
in spirit to, but not to be confused with SE-tree enumeration—devised by
Rymon [18] for the enumeration of traditional itemsets. This algorithm works
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through the merging of the conceptual (graphical) subset-superset (lattice)
and parent-child relationships, which helps during “set enumeration that
can avoid intensive checking [of] meaningless itemsets.”. In addition, con-
straints prevent the counting of infrequent generalized itemsets. Finally, the
algorithm uses a vertical database representation, and was shown through
experimental evaluations to outperform the Prutex algorithm.

As was found to be the case with traditional itemset mining, generating
so-called closed itemsets [26, 22, 15] were explored in the context of gener-
alized itemset mining [21, 17] and were found to be as useful. The idea and
discovery of all closed itemsets, within the field of formal concept analysis
(FCA), actually predates the formulation of frequent closed itemsets in the
field of data mining. However, “at that point in time, the frequency was
not used for pruning, i.e., implicitly a minimum frequency of 0% was as-
sumed.” [13]3 The discovery of only closed frequent itemsets has been shown
to be advantageous, because oftentimes the set of closed frequent itemsets
is much smaller than the set of all frequent itemsets; and moreover, it is
possible to enumerate all frequent itemsets and their supports from the set
of frequent closed itemsets. Some of the algorithms in the area of mining
generalized frequent closed itemsets include: cSET by Sriphaew et al. [21],
and g-Apriori and g-ARMOR by Pudi et al. [17].

The aforementioned works are all concerned with mining generalized fre-
quent itemsets from certain itemset databases, and are therefore in a different
domain than this paper—where we mine from uncertain databases.

There also exist algorithms which seek to reduce the redundancy of gener-
ated association rules—sometimes through the use of definitions of “interest”
and/or “essential” rules [12].

Some modern applications are known to produce incomplete or noisy
data; one salient example being a sensor network [24, 28]. Further, privacy-
preserving data mining applications [8, 25] in particular have a need for
frequent itemset mining algorithms that operate within an uncertain data
context.

Starting with the work of Agrawal et al. [2], mining frequent itemsets has
been extensively studied; that research, however, has focused on so-called
certain databases (i.e., where each transaction and the items it contains is
known for sure). This contrasts sharply with research into mining for frequent

3See this reference for further background and connections between FCA and traditional
itemset mining.
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itemsets in databases that contain transactions or items that have existential
probabilities, which has been studied in [27, 6, 7, 5, 1, 14]. In these so-called
uncertain databases, one can not be certain about whether an itemset is
frequent or not.

Recent research into mining frequent itemsets from uncertain databases
include Chui at et al. [7, 6], who uses the expected support of an itemset
from an uncertain database to define whether it is frequent or not. Using this
technique, itemsets are considered frequent if its expected support exceeds
the minimum support threshold minsup. However, as indicated by [5], a
frequent itemset based the expected support cannot express how close the
estimate is that it is frequent. In [5], Bernecker et al. defined the support
distribution of an itemset (based on possible world semantics) and used it
to define the frequentness probability as the sum of the probabilities of the
support equal to or above the minimum support minsup. Thus, the frequent
itemsets with conference threshold τ are the itemsets whose frequentness
probabilities exceeds τ .

The aforementioned algorithms and research, is in the domain of mining
frequent itemsets from uncertain databases. However, they do not allow for
the mining of generalized itemsets in uncertain databases. That is, there is
no taxonomy relating generalized and non-generalized items.

6 Conclusion

In this paper, we have disseminated the new concept of a probabilistic gen-
eralized frequent itemset (PGFI)—rooted in probabilistic mathematics and
possible world semantics. Further, an algorithm to mine for such concepts
was presented. Lastly, an experimental evaluation of the new algorithm—
named PGFIM—was shown.
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