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1 Introduction

Broadly speaking, renewed interest in the field of mining in uncertain data-
bases has been motivated by the advent of applications which lend themselves
to that area. More specifically, some modern applications are known to pro-
duce incomplete or noisy data; one salient example being a sensor network
[9, 12]. Further, privacy-preserving data mining applications [6, 10] in partic-
ular have a need for frequent itemset mining algorithms that operate within
an uncertain data context.

Starting with the work of Agrawal et al. [2], mining frequent itemsets
has been extensively (and sometimes seemingly exhaustively) studied; that
research, however, has focused on so-called certain databases (i.e., where
each transaction and the items it contains is known for sure). This contrasts
sharply with research into mining for frequent itemsets in databases that
contain transactions or items that have existential probabilities, which has
been studied in [11, 4, 5, 3, 1, 8]. Put another way: “All previous studies ...
assume a data model under which transactions capture doubtless facts about
the items that are contained in each transaction.” [5] Thus, in these so-
called uncertain databases, one can not be certain about whether an itemset
is frequent or not, and as to the makeup of a particular database. All we can
can do is estimate if an itemset is frequent or not within a certain confidence.

There have been works on mining frequent itemsets from uncertain data-
bases. Chui at et al. [5, 4] uses the expected support of an itemset from
an uncertain database to define whether it is frequent or not. Itemsets are
considered frequent if its expected support exceeds the minimum support
threshold minsup. As indicated by [3], a frequent itemset based the expected
support cannot express how close the estimate is that it is frequent. Ber-
necker et al. [3] defined the support distribution of an itemset and used it
to define the frequentness probability as the sum of the probabilities of the
support equal to or above the minimum support minsup. Thus, the frequent
itemsets with conference threshold τ are the itemsets whose frequentness
probabilities exceeds τ .

In traditional (certain database) data mining, the frequent closed item-
sets are widely seen as being a more compact and lossless representation of
frequent itemsets. A frequent itemset is closed if it is the Galois closure of
itself or if it has no super itemset with the same support.

Hitherto, no researchers have proposed a method for mining frequent
closed itemsets in uncertain databases. In fact, no researchers have defined
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the probabilistic support of an itemset accurately and closed itemsets in un-
certain databases. In this paper, we use maximum frequentness to define
the probabilistic support of an itemset and use the probabilistic support to
define closed itemsets in uncertain databases for the first time. We also pro-
posed an algorithm (PFCIM) to mine probabilistic frequent closed itemsets in
uncertain databases, by extending the probabilistic frequent itemset mining
(PFIM) algorithm from [3].

The rest of this paper is laid out as follows: Section 2 will disseminate
some necessary concepts and notations for the full understanding of later ma-
terial. In Section 3, we define the probabilistic support of an itemset based
on maximum frequentness and then probabilistic frequent closed itemsets in
uncertain databases. Section 4 describes the probabilistic frequent closed
itemset mining (PFCIM) algorithm. Section 5 provides an experimental eval-
uation of the algorithm; finally, Section 6 concludes the paper.

2 Preliminaries

2.1 Uncertain Data Model

The uncertain data model used in this paper assumes the presence of a set
of items I = {x1, x2, . . . , xm} and a set of transactions T = {t1, t2, . . . , tn}.
Each item x ∈ I has an accompanying existential probability of being in
transactions tj, denoted as P (x ∈ tj) ∈ [0, 1]. The item x with 0 < P (x ∈
tj) < 1 is called an uncertain item in tj. The zero existential probability of
item x in tj, P (x ∈ tj) = 0, simply means that x does not exist in tj. Item
x with P (x ∈ tj) = 1 is contained in tj with full certainty.

An uncertain database T over itemset I can be represented by a n ×m
matrix M , where Mj,i is the existential probability of i-th item xi in j-
th transaction tj, Mj,i = P (xi ∈ tj). If all the existential probabilities
in M are either 1 or 0, the database degenerates to a traditional certain
database. Thus, a certain database can be regarded as a special case of
uncertain database.

An example uncertain database is shown in Figure 1, where I = {1, 2, 3}
and there are three transactions T = {t1, t2, t3}. In transaction tj, item x
and its existential probability P (x ∈ tj) in it is represented as the tuple (x,
P (x ∈ ti)). The items with zero existential probability are not shown.

In Figure 1, each transaction could uniquely identify a loyal customer,
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TID Itemset
t1 (1, 1.0), (3, 0.99)
t2 (2, 0.4), (3, 0.88)
t3 (1, 0.9), (2, 0.2), (3, 0.95)

Figure 1: Uncertain Database

and each uncertain item (i.e., 1, 2, 3) could represent a particular store item
and the probability of a customer purchasing that item. Alternatively, each
TID could represent a patient and each item a disease and the probability of
that patient being diagnosed with that disease.

An uncertain database defines a number of possible worlds. “A possible
world is a hypothetical state of the world that may be represented by an
ordinary database with complete and certain information.” [13] Since for
each probability P (x ∈ tj), there exists a possible world that includes item x
in transaction tj and another that does not, there are total of 2|T |·|I| = 2n·m

possible worlds. Assuming that the transactions in the uncertain database
are independent (customers’ purchase pattern are independent) and the ex-
istential probabilities of the items in each transaction are also independent
(the probabilities of the items purchased by a customer are independent),
the probability of a possible word w, denoted as P (w), which is the joint
probability of all its certain transactions, is

P (w) =
∏

t∈T (w)

(
∏
x∈t

P (x ∈ t′) ·
∏
x/∈t

(1− P (x ∈ t′))) (1)

where T (w) is the set of certain transactions of world w, t a certain transac-
tion in T (w), t′ the corresponding uncertain transaction in uncertain data-
base T , and P (x ∈ t′) the existential probability of item x in the uncertain
transaction t′. It can be proved that

∑
w∈W P (w) = 1, where W is the set

of all 2|T |·|I| possible worlds. If the existential probabilities P (x ∈ tj) are
either 1 or 1 for all tj ∈ T and item x ∈ I (i.e. T is a certain database), the
probability of that possible world equal to T is 1 and all the other possible
worlds have zero probability.

2.2 Probabilistic Frequent Itemsets

The possible worlds and their probabilities are the foundation of reasoning
about the support of itemsets in uncertain databases. Since each possible
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world w and its set of transactions T (w) are certain, the support of each
itemset X in T (w) is well-defined and is the number of transactions in T (w)
that contains X, denoted as SupT (w)(X). Thus, the probability of the sup-
port of X being i, denoted as Pi(X) in the original uncertain database is

Pi(X) =
∑

w∈W,SupT (w)(X)=i

P (w) (2)

where W is the set of possible worlds. Therefore, an uncertain database T
defines a discrete probability distribution of the support of each itemset X,
Pi(X) (i = 0, 1, . . . , |T |), according to (2).

Bernecker et. al. [3] proved that support probability distribution Pi(X)
can be calculated without materializing all the possible worlds by

Pi(X) =
∑

S⊆T,|S|=i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈T−S

(1− P (X ⊆ t))) (3)

where T is the original uncertain database and P (X ⊆ t) is

P (X ⊆ t) =
∏
x∈X

P (x ∈ t)

All the work on frequent itemset mining in uncertain databases prior to
[3] used the expected support of the support distribution Pi(X), E(X) =∑|T |

i=0 i · Pi(X), to define frequent itemsets as being those whose expected
support exceeds the minimum support minsup.

Instead of using the expected support, Bernecker et. al. [3] proposed
to use frequentness probability to define probabilistic frequent itemsets with
a certain confidence. The probability that the support of itemset X is at
least i is P≥i(X) =

∑|T |
k=i Pk(X). Thus, P≥minsup(X) is the probability that

itemset X is frequent and is called the frequentness probability of X. In [3],
the probabilistic frequent itemsets with confidence τ are the itemsets whose
frequentness probability P≥minsup(X) exceeds τ .

3 Probabilistic Frequent Closed Itemset Min-

ing

Frequent itemset mining has two drawbacks: (1) there are often too many
frequent itemsets to report and digest and (2) frequent itemsets mined do
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not have information about their frequentness or support. Mining maximal
frequent itemsets can solve the first problem, but not the second one. Only
mining closed frequent itemsets solves both problems.

In the certain database mining, an itemset X is closed if and only if it
is the Galois closure of itself, i.e. X = c(X). Here c is the Galois closure
operator defined as c = f ◦ g, where g : I → T and f : T → I are the two
functions defined as follows. Given itemset X, g(X) is the set of transactions
that contain X, i.e. g(X) = {t ∈ T | X ⊆ t}. Given a set of transactions
Y ⊆ T , f(Y ) is the maximal itemset that are contained in all transactions
in Y , i.e. f(Y ) = {x ∈ I | ∀t ∈ Y, x ∈ t}. In other words, an itemset X is
closed if and only if f(g(X)) = X.

The support of an itemset X, SupT (X), in an certain database T is the
number of transactions in T that contain X, i.e. SupT (X) = |g(X)|. We can
prove that an itemset X is closed if and only if it does not have any proper
super itemset with the same support, i.e. there is no itemset Y such that
X ⊂ Y and SupT (X) = SupT (Y ). Often, this theorem is used as a second
alternative definition for closed itemsets.

3.1 Probabilistic Support of Itemsets

In uncertain database mining, we cannot use Galois closure to define a closed
itemset, because the database T is uncertain and functions g and f are not
defined. However, we may be able to use the second definition to define closed
itemset. The challenge is that for an uncertain database T , the support of an
itemset X does not have a specific value. It is rather a discrete random num-
ber with distribution Pi(X) (i = 0, . . . , |T |) determined by (3). Bernecker et.

al. [3] used frequentness probability P≥minsup(X) =
∑|T |

k=minsup Pk(X), the
probability that the support of X is at least minsup, to define probabilistic
frequent itemsets with certain conference τ to be the itemsets X such that
P≥minsup(X) ≥ τ . But, the probabilistic support of an itemset with a cer-
tain confidence has never been defined, although the term of “probabilistic
support” appeared in [3].

Note that P≥i(X) =
∑|T |

k=i Pk(X) is a non-increasing monotonous function
of i, i.e. P≥j(X) ≤ P≥i(X) for j > i. In this paper, we define the probabilistic
support of itemset X with confidence τ , denoted as SupT (X, τ), to be the
largest i such that P≥i(X) ≥ τ . Formally,
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Definition 1 Given an itemset X, uncertain database T, and confidence
threshold τ , the probabilistic support of X with confidence τ , denoted as
SupT (X, τ), is defined as follows:

SupT (X, τ) = argmaxi∈[0,|T |](P≥i(X) ≥ τ)

The probabilistic support SupT (X, τ) above is the largest threshold, above
which we can say about the support of X in database T with confidence τ .
In other words, it is the maximum frequentness of itemset X with confidence
τ , and indicates how frequent—probabilistically—an itemset X is.

3.2 Probabilistic Frequent Closed Itemset

Bernecker et. al. [3] also proved that frequentness probability P≥minsup(X) =∑|T |
k=minsup Pk(X) is anti-monotonic. That is, for any Y ⊆ X, and any i,

P≥i(X) ≤ P≥i(Y ) (Lemma 17 of [3]). Using the anti-monotonic property of
P≥i(X), We can prove the following anti-monotonic property of the proba-
bilistic support SupT (X, τ) as follows:

Lemma 1 For all itemsets Y ⊆ X in an uncertain database T and any
confidence τ , SupT (X, τ) ≤ SupT (Y, τ). In other words, the probabilistic
support with the same confidence decreases as the itemset increases.

Proof 1 Suppose the contrary that SupT (X, τ) > SupT (Y, τ). Let SupT (X, τ)
and SupT (Y, τ) be k and j, respectively, and we have k > j. Since SupT (X, τ) =
k, we have P≥k(X) ≥ τ according to Definition 1. Since Y ⊆ X, we have
P≥k(X) ≤ P≥k(Y ) according to the anti-monotonic property of frequentness
probability (Lemma 17 of [3]). Thus, we have P≥k(Y ) ≥ τ . Since k > j
and P≥k(Y ) ≥ τ , j is not the largest i such that P≥i(Y ) ≥ τ . Therefore,
SupT (Y, τ) is not j according to Definition 1. We, thus, reached the contra-
diction and SupT (X, τ) ≤ SupT (Y, τ) must be true.

Lemma 1 shows that the probabilistic support of itemsets of uncertain
databases, defined in Definition 1, has the similar anti-monotonous property
for the support of itemsets in certain databases. This property allows us to
define probabilistic closed itemsets in uncertain databases, by following the
second alternative definition of a closed itemset in certain databases.
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Definition 2 Given an uncertain database T and a confidence threshold τ ,
an itemset X is probabilistically closed with confidence τ if and only if there
is no proper super itemset Y ⊃ X that has the same probabilistic support
with the same confidence τ as X, i.e. with SupT (Y, τ) = SupT (X, τ).

Just as not all itemsets are frequent probabilistically, not all probabilistic
closed itemsets are frequent. We can define in our term that an itemset
X is probabilistic frequent with respect to minimum support minsup and
confidence τ if and only if its probabilistic support, SupT (X, τ), is at least
minsup.

Definition 3 Given an uncertain database T , a minimum support minsup
between 0 and |T |, and a confidence threshold τ between 0 and 1, an itemset X
is probabilistically frequent if and only its probabilistic support with confidence
τ exceeds minsup, i.e. SupT (X, τ) ≥ minsup.

In [3], frequent itemsets X are defined as those satisfying P≥minsup(X) ≥ τ .
The following lemma shows that P≥minsup(X) ≥ τ is actually equivalent to
SupT (X, τ) ≥ minsup.

Lemma 2 Given an uncertain database T , a minimum support minsup be-
tween 0 and |T |, a confidence threshold τ between 0 and 1, and an itemset
X, SupT (X, τ) ≥ minsup if and only if P≥minsup(X) ≥ τ .

Proof 2 (⇒) Let SupT (X, τ) ≥ minsup be j. If SupT (X, τ) ≥ minsup,
then j ≥ minsup and also P≥j(X) ≥ τ (Definition 1). We have

P≥j(X) =
∑|T |

k=j Pk(X) ≥ τ . P≥minsup(X) can be divided as P≥minsup(X) =∑j
minsup Pk(X)+

∑|T |
j Pk(X) because j ≥ minsup. Since

∑j
minsup Pk(X) ≥ 0,

we have P≥minsup(X) ≥
∑|T |

j Pk(X) ≥ τ .
(⇐) Let P≥minsup(X) ≥ τ be true and SupT (X, τ) be j. Assume the contrary
that j < minsup. Since P≥minsup(X) ≥ τ and j < minsup, SupT (X, τ)
cannot be j according to Definition 1. Thus, j ≥ minsup.

Therefore, our definition of frequent itemsets by Definition 3 is equivalent to
the one in [3]. But, our definition is more in line with the traditional frequent
itemset definition for certain databases.
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3.3 PFCIM Problem Definition

Now, the probabilistic frequent closed itemset can be defined as follows:

Definition 4 Given an uncertain database T , a minimum support minsup
between 0 and |T |, a confidence threshold τ between 0 and 1, X is a proba-
bilistic frequent closed itemset with confidence τ if and only (1) there is no
proper super itemset Y ⊃ X such that SupT (Y, τ) = SupT (X, τ) and (2)
SupT (X, τ) ≥ minsup.

The problem of probabilistic frequent closed itemsets mining (PFCIM) in
uncertain databases can be defined as follows:

Definition 5 Given an uncertain database T , the minimum support minsup
between 0 and |T |, and confidence threshold τ between 0 and 1, the problem
of probabilistic frequent closed itemset mining (PFCIM) is to find all the
itemset X such that (1) there is no proper super itemset Y ⊃ X such that
SupT (Y, τ) = SupT (X, τ) and (2) SupT (X, τ) ≥ minsup.

4 Mining Algorithm

As shown previously, P≥i(X) is defined as
∑|T |

k=i Pk(X) and Pi(X) can be
calculated using Equation (3).

Bernecker et al. [3] shows that P≥i(X) can also be calculated as:

P≥i(X) =
∑

S⊆T,|S|≥i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈T−S

(1− P (X ⊆ t))) (4)

The complexity of computing P≥i(X) is exponential with respect to the size
of database |T |.

In [3], Bernecker et al. use a dynamic programming scheme to calculate
P≥i(X) in linear time O(|T |) by calculating P≥i,j(X), which is P≥i(X) from
the first j transactions of T only. In other words, P≥i(X) = P≥i,|T |(X). The
recursive equation for P≥i,j(X) is

P≥i,j(X) = P≥i−1,j−1(X) · P (X ⊆ tj)

+ P≥i,j−1(X) · (1− P (X ⊆ tj)) (5)

where P≥0,j = 1 ∀.0 ≤ j ≤ |T |, P≥i,j = 0 ∀.i > j
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Figure 2(a) taken from [3] illustrates the aforementioned dynamic pro-
gramming scheme used in calculating
P≥minsup,|T |(X) for mining probabilistic frequent itemsets.

For mining probabilistic frequent closed itemsets, we need to find the
probabilistic support SupT (X, τ). This means that after we find
P≥minsup,|T |(X) ≥ τ , we need to continue calculating P≥i,|T |(X) for i >
minsup as long as
P≥i−1,|T |(X) ≥ τ , until it is less than τ . In Figure 2(b), we see an example
where the computation is run until
P≥minsup+2,|T |(X) < τ is reached for the first time, which makes SupT (X, τ) =
minsup+ 1.

Figure 3 shows our function ProbSup() for calculating the probabilistic
support of an itemset using the dynamic programming scheme shown in Fig-
ure 2(b). An itemset X has two fields: 1) an integer X.MS to hold the prob-
abilistic support of the itemset, Sup|T |(X, τ), and 2) an array X.P [1 . . . |T |]
of floats, where X.P [j] is used to store P (X ⊆ tj).

Recall that P (X ⊆ t) =
∏

x∈X P (x ∈ t). Therefore, we have

P ((X ∪ {b}) ⊆ tj) = P (X ⊆ tj) · P (b ∈ tj)

We explore this fact and store P (X ⊆ tj) in X.P [j] so that when we need
to calculate P ((X ∪ {b}), we simply retrieve X.P [j] and multiply it with
P (b ∈ tj) instead of calculating the product

∏
x∈X P (x ∈ t) directly; this

speeds up the computation. Thus, the dynamic programming Equation 5
can be re-formulated as:

P≥i,j(X ∪ {b}) = P≥i−1,j−1(X ∪ {b}) ·
P (X ⊆ tj) · P (b ∈ tj)

+ P≥i,j−1(X ∪ {b}) ·
(1− P (X ⊆ tj) · P (b ∈ tj)) (6)

In Figure 3, the uncertain database is stored in a two-dimensional T , where
the existential probability for item x ∈ I in transaction tj ∈ T , P (x ∈ tj), is
stored in T [j][x] (items are represented as natural numbers and thus used as
an index directly).

The probabilistic support of itemset X is found by calling ProbSup(X,

tau, minsup, L), where L is a set that contains the itemset of (|X| − 1)-
prefix of X (|X| > 1). The if statement at line 2 of Figure 3, retrieves this
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prefix using prefix function (not shown) and assigns it to Y . The purpose
is to have access to Y.P [. . .]. The next two nested loops i and j are used
to compute P≥i,j(X) saved in matrix[i][j]. Take note that values of j that
are greater than |T | − minsup + i and |T | need not be visited. Also note
that for simplicity, the entire matrix (possibly large) is shown, but when
implementing, only rows i and i − 1 are necessary—greatly reducing the
memory burden. Lines 11–17 simply initialize the first row of the matrix in
Figure 2(b) to all 1’s or initialize a cell j− 1 to 0 if i = 0. Next, x is the last
item of itemset X—obtained by calling the postfix function (not shown).
x can be seen as being equivalent to b in Equation 6. At line 19 the whole
of Equation 6 is performed to calculate P≥i,j(X). Within this calculation,
one can see the reuse of previous calculations of existential probability of an
itemset occurring in transaction tj, by way of referencing Y.P [j]. Next, at
line 20, if i = 1 or j = |T | −minsup + i, then the probability of itemset X
occurring in transaction tj (P (X ⊆ tj)) is saved for itemsets of length k+ 1.
Finally, at line 24, if matrix[i][j− 1] < τ—meaning that the itemset will not
be frequent and there is no need continuing computation—and i 6= 0, then
i− 11 is returned. Otherwise, the computation continues until this condition
is meet, or execution flows out of all loops and line 28 is reached—at which
point i− 1 will be returned.

Our Probabilistic Frequent Closed Itemset Mining (PFCIM) algorithm
uses an apriori-style breadth-first technique for its mining. That is, all prob-
abilistic frequent closed itemsets of length 1 are discovered first, followed by
those of length 2, and so on.

The closure checking (to determine if a frequent item is closed or not) is
based on the property that a k-itemset (itemset of length k) is closed if none
of its k + 1-super-itemsets has the same support.

Property 1 Given a probabilistic frequent itemset X of length k, if all Y ⊃
X of length k+1 have a probability support not equal to X (i.e., SupT (X, τ) 6=
SupT (Y, τ), then X is a probabilistic frequent closed itemset.

Proof 3 Let Z be a superset of X of length greater than k + 1, i.e. Z ⊃ X
and |Z| > k+ 1. Then, there must be an itemset Y of length k+ 1 such that
Z ⊃ Y ⊃ X. According to the anti-monotonous property (Lemma 1), we
have SupT (Z, τ) ≤ SupT (Y, τ) ≤ SupT (X, τ). Since we know SupT (Y, τ) 6=
SupT (X, τ), we have SupT (Z, τ) ≤ SupT (Y, τ) < SupT (X, τ). Thus,

1i− 1 is returned because i is incremented by the for loop before exiting it.
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function ProbSup(itemset X, float τ ,
int minsup, optional L← NULL)

begin
1. itemset Y ;
2. if L 6= NULL then

Y ← prefix(X,L);
else
Y.P [1 . . . |T |]← 1;

endif
int i;

8. for (i← 0; i ≤ |T |; i+ +) do
int j;

10. for (j ← i; j ≤ |T | −minsup+ i ∧ j ≤ |T |; j + +) do
11. if i ≡ 0 then

matrix[i][j]← 1;
continue;

endif
if j ≡ i then
matrix[i][j − 1]← 0;

17. endif
18. item x← postfix(X);
19. matrix[i][j]← matrix[i− 1][j − 1] ∗ Y.P [j] ∗ T [j][x]+

matrix[i][j − 1] ∗ (1− (Y.P [j] ∗ T [j][x]));
20. if i = 1 ∨ j = |T | −minsup+ i then

X.P [j]← Y.P [j] ∗ T [j][x];
endif

endfor
24. if matrix[i][j − 1] < τ ∧ i 6= 0 then

return i− 1;
endif

endfor
28.return i− 1;
end

Figure 3: Probabilistic Support Function
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SupT (Z, τ) < SupT (X, τ). Therefore, X is an closed itemset according to
Definition 2.

Using this property, the algorithm need only keep itemsets of length k and
k + 1, when checking for closure.

The pseudocode for the PFCIM algorithm is shown in Figure 4. The al-
gorithm begins by placing all items (singletons) in the set C (line 1). Next,
at line 2, all itemsets X that are in set C and also have a SupT (X, τ) value
greater than or equal to minsup, are placed in set L. At line 3, L is passed to
the Apriori-Gen algorithm (from [2]), returning itemset candidates of size
2 which are placed in the set C ′. Line 4 begins a while loop that continues
until C ′ is empty. Starting at line 5 and ending at line 11, each itemset X
in C ′ is checked to see if it is a probabilistic frequent itemset or not. This
entails calling the function ProbSup, which returns the itemset’s probabilis-
tic support value. If MS is greater than or equal to minsup, the itemset
is frequent, SupT (X, τ) is assigned to X.MS, and X is added to the set L′.
Next (lines 12 through 23), each itemset X of length k−1 (found in set L) is
compared to each itemset of length k (found in L′). If no superset of X in L
is found in L′, which has the same support of X, X is outputted as a closed
probabilistic frequent itemset. Finally, at line 24, L is assigned the values of
L′, and then (line 25) Apriori-Gen is called again to generate candidates of
length k + 1, which are assigned to C ′.

5 Experimental Evaluation

The PFCIM algorithm was put through a series of experimental evaluations,
which provide some idea of its computation costs. These tests were performed
using well-known and available datasets2, and were evaluated varying both of
the independent variables minsup and τ . Figure 5 shows each of the datasets
used in the evaluation and their characteristics (|A| denotes the number of
attributes). All datasets used were found at the Frequent Itemset Mining
Dataset Repository <http://fimi.cs.helsinki.fi/data/>. This dataset repos-
itory contains well-known datasets that have been converted into itemset
transactions. During this transformation, each possible item in the origi-
nal datasets become their own attribute—this explains the large number of

2More information about the accidents dataset can be found in [7].
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function PFCIM(int minsup, float τ)
begin
1. C ← {X|X ∈ I};
2. L← {X|X ∈ C∧ ProbSup(X, τ,minsup) ≥ minsup};
3. C ′ ← Apriori-Gen(L); // X.MS is set for all X ∈ L
4. while C ′ 6= ∅ do
5. foreach X ∈ C ′ do

MS ← ProbSup(X, τ,minsup, L);
if MS ≥ minsup then
X.MS ←MS;
L′ ← L′ ∪X;

endif
11. endfor
12. foreach s ∈ L do

flag ← true;
foreach t ∈ L′ do

if s ⊂ t ∧ s.MS ≡ t.MS then
flag ← false;
break;

endif
endfor
if flag then

- Output s as a probabilistic frequent
closed itemset;

endif
23. endfor
24. L← L′;
25. C ′ ← Apriori-Gen(L);

endwhile
end
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function Apriori-Gen(L)
begin

int j ← |L[1]|; //j is the size of the elements in L
foreach p, q ∈ L such that
p1...(j−1) ≡ q1...(j−1) ∧ pj < qj do
c← p1...(j−1)pjqj;
if all s ⊂ c such that |s| ≡ j, s ∈ L then
C ← C ∪ {c};

endif
endfor
return C;

end

Figure 4: PFCIM Algorithm

attributes in the datasets shown in Figure 5.3

Dataset |T | |A| Density
Accidents 10, 000 310 10.94%

Chess 3, 196 75 49.33%
Mushroom 8, 124 119 19.33%

T10I4D100K 10, 000 866 1.16%
T40I10D100K 20, 000 941 4.21%

Figure 5: Experimental Dataset Characteristics

Each of the aforementioned datasets (even through they have been con-
verted into itemset transactions) are still certain datasets. To transform
these datasets into uncertain datasets, the following steps were taken (Fig-
ure 6(a) and 6(b) show an example certain dataset and a possible uncertain
transformation of it, respectively):

1. A boolean valued matrix B is created of size |T | × |A|;
3The first 10, 000 transaction were taken for the Accidents and T10I4D100K datasets,

and 20, 000 for T40I10D100K.
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2. If a certain item ii (1 ≤ i ≤ |A|) is present in transaction tj (1 ≤ j ≤
|T |), then B[j][i] is marked as true, else false;

3. Each element i of B[j] is checked. If i is marked true, then a random
number is generated according to the beta distribution (denoted as r)
with α = 5 and β = 1, else a random 1 − r is generated. Item j is
then outputted, followed by a “:” and the random number (either r or
1 − r). Thus, the number before the “:” represents the item and the
value after its corresponding existential probability;

4. Once all elements i of B[j] have been enumerated, a new line is inserted
into the new file, and step 3 is performed for j + 1. Finally, once all j
have been enumerated the process is stopped;

TID Itemset
1 1 2 4
2 2 6 7 9
3 3 7

(a) Certain Dataset

TID Itemset
1 1:0.89 2:0.99 3:0.12 4:0.78 5:0.03 6:0.1

7:0.11 8:0.03 9:0.14
2 1:0.12 2:0.89 3:0.04 4:0.05 5:0.13 6:0.91

7:0.88 8:0.03 9:0.91
3 1:0.04 2:0.11 3:0.8 4:0.2 5:0.02 6:0.02

7:0.99 8:0.05 9:0.2
(b) Uncertain Dataset

Figure 6: Example Certain to Uncertain Dataset Transform

We believe the aforementioned database transformation procedure, pro-
duces an uncertain database from a certain one, that more resembeles to a
real-world uncertain dataset. Figure 7(a) shows effect of τ on the execution
time of the algorithm. One can see that execution time is linear with re-
spect to τ . In Figure 7(b) the effect of minsup on the execution time of the
algorithm is shown. For each dataset a minsup value was chosen relative
to the number of transactions in it that would produce a minsup/|T | value
equal to the percentages shown. The results show that the execution time is
exponential with respect to minsup (a result consistent with intuition and
other studies of itemset mining).
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6 Conclusions

In this paper, we defined probabilistic support and frequent closed itemsets
based on it in uncertain databases for the first time. In addition, we pro-
posed a probabilistic frequent closed itemset mining (PFCIM ) algorithm to
mine probabilistic frequent closed itemsets from uncertain databases. An
experimental evaluation was given that displays some of the algorithm’s ex-
ecution complexities; which were performed on a variety of well-known real
and synthetic datasets.
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